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Kinetic theory of photon acceleration: Time-dependent spectral evolution
of ultrashort laser pulses
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We investigate the evolution of the space- and time-dependent spectrum of an ultrashort laser pulse in the
presence of relativistic plasma waves. A kinetic description of the laser pulse is introduced, generalizing the
classical concept of the number of photons. The propagation equation for the generalized photon density is
derived. The spectral deformation induced by a relativistic plasma perturbation in the laser pulse is also
calculated. We also propose a new diagnostic technique for the electron density gradient, based on the analysis
of the induced chirp in ultrashort laser pulses.@S1063-651X~98!10403-8#

PACS number~s!: 52.35.2g
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I. INTRODUCTION

Advances in laser technology allow now for the gene
tion of high intensity ultrashort laser pulses@1#. The propa-
gation of such pulses in a plasma is a subject of consider
importance due to the rich variety of nonlinear phenome
and to the applications of some of the mechanisms to
vanced particle accelerators@2#, the fast ignitor fusion con-
cept @3#, and new sources of tunable radiation@4,5#.

Among these mechanisms, photon acceleration@5,6#, or
the frequency upshift of electromagnetic radiation by la
amplitude plasma waves, has received considerable inte
due to its potential use as a diagnostic tool for relativis
coherent plasma perturbations~plasma waves and ionizatio
fronts!, and as a possible source of tunable radiation
supercontinuum generation@7–9#.

The usual theoretical descriptions of photon accelera
are based on two opposite approaches: the ray tracing
Hamiltonian, formulation@7#, and the usual plane wave Fou
rier expansion@8–10#. The first formulation describes in
general fashion the space-time dynamics of a wave pac
the classical analog of the photon, but does not describe
global spectrum and shape deformation of an electrom
netic pulse. The plane wave formulation allows for the de
vation of transmission and reflection coefficients but fails
describe the localized nature of an ultrashort laser pulse
its space-time dynamics. The two descriptions give comp
mentary, and yet incomplete, views of the same mechan
and fail to describe in a systematic way the full dynamics
the ultrashort laser pulse in the presence of a coherent pla
perturbation moving with phase velocity close to the spe
of light c.

In this paper, we present a new kinetic description
photon acceleration based on a Klimontovich kinetic eq
tion for the photons. In this formalism the classical analog
the number of photons evolves in phase space accordin
the Hamilton equations of motion for the photons, deriv
from the ray tracing equations. The space–wave-vector
main is fully described in a fashion similar to that curren
employed in the characterization of ultrashort laser pul
@11#. The laser pulse spectrum along the extent of the pu
571063-651X/98/57~3!/3423~9!/$15.00
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can then be examined, and the chirp induced by the per
bation can be determined. It is shown that the space–wa
number energy density is considerably deformed, giving r
to pulses that are not transform limited (DxDk@1). This
induced chirp can give us information about the local plas
density along the pulse extent. The usual frequency~upshift!
~downshift! of photon acceleration is also observed, with t
corresponding spectral broadening and electromagnetic
ergy increase~decrease!.

This paper is organized as follows. In Sec. II, we deri
the space wave-number distribution for the photons, gen
alizing the usual procedure for the classical number of p
tons of an electromagnetic plane wave. The main proper
of the number of photons are also presented. The numbe
photons representation of a chirped Gaussian laser puls
calculated, giving a clear picture of the most important fe
tures of this formalism. Section III includes the derivation
the time evolution equation for the space wave-number
ergy density starting from the energy conservation princi
for the fields and the particles. The limit in which this equ
tion is equivalent to a flux conservation equation for t
phase space density, or a Klimontovich equation for the p
tons, is established. In Sec. IV, this formalism is applied
the propagation of a weak ultrashort laser pulse in the p
ence of a relativistic plasma wave. Analytic expressions
the frequency upshift and for the induced chirp of the la
pulses are derived. It is shown that the induced chirp can
easily related to the electron density perturbation. A cons
erable deformation of the spectrum is observed; the chirp
the laser pulse can be quite significant even for propaga
in tenuous plasmas. Finally, in Sec. V, we state the con
sions.

II. NUMBER OF PHOTONS: PHASE-SPACE DEFINITION

The concept of the number of photons has been use
plasma physics since the 1960s@12,13#. This definition is
accurate for plane waves but it is not valid for laser puls
Previous attempts to generalize the number of photons
more general electromagnetic fields have been conce
with the mathematical formalism behind the derivation@14#.
Our approach here will be focused on the applicability a
3423 © 1998 The American Physical Society
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limits of validity of the number of photons to the descriptio
of the time-dependent spectra of laser pulses.

We first generalize the concept of the number of phot
in order to describe the space- and time-dependent spec
of an ultrashort laser pulse propagating in dielectric med
The rate of change of the energy density of the electrom
netic fieldEfield is given by

]Efield

]t
5E•

]D

]t
1H•

]B

]t
. ~1!

With the electric fieldE and the magnetic fieldH written in
complex form, Eq.~1! can be written as

]Efield

]t
5

1

4S E•

]D*

]t
1m0H•

]H*

]t
1c.cD . ~2!

As usual @15# we neglect the rapidly varying termsE•Ḋ,
E* •Ḋ* , H•Ḃ, and H* •Ḃ* . Equation~2! is obtained by a
cycle average of Eq.~1!. We also considerm5m0. We now
concentrate our efforts on the electric component of the fi
energy. Following the procedure outlined by Landau@15#,
we consider the constitutive relation D(v,k)
5e0e(v,k)E(v,k), wheree(v,k) is the relative permittivity
of the dielectric medium, and we assume that the spec
content of the field is not very broad, i.e.,Dv/v0!1, with
v0 the central frequency of the laser pulse. Under these
sumptions, the contribution of the electric field related ter
to Eq. ~2! can be written as

]Eelectric

]t
5

e0

4 E dk

~2p!3

dk8

~2p!3

]ve~v,k!

]v U
v5v0

3E~k8,t !•
]E* ~k,t !

]t
exp@2 i ~k2k8!•r#1c.c.

~3!

Integrating Eq.~3! in all space~in this paper, when no ex
plicit indication is given, all integrals extend from2` to
1`), and then integrating ink8, we obtain

]

]tE drEelectric5
e0

4 E dk

~2p!3

]ve~v,k!

]v U
v0

3E~k,t !•
]E* ~k,t !

]t
1c.c. ~4!

If the electric fieldE(k,t) is written as

E~k,t !5E dr8E~r8,t !exp~2 ik•r8! ~5!

and the complex conjugateE* (k,t) is expressed as

E* ~k,t !5E dr9E* ~r9,t !exp~2 ik•r9! ~6!

then, in the new integration variabless5r92r8 and r5(r8
1r9)/2, Eq. ~4! reduces to
s
um
.
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]

]tE drEelectric5
e0

4

]

]tE dr
dk

~2p!3

]ve~v,k!

]v U
v0

F~k,r,t !,

~7!

whereF(k,r,t) obeys

F~k,r,t !5E dsE~r2s/2,t !•E* ~r1s/2,t !exp~ ik•s!, ~8!

which means that the electric component of the energy d
sity verifies

Eelectric~r,t !5
e0

4 E dk

~2p!3

]ve~v,k!

]v U
v0

F~k,r,t !. ~9!

As for the magnetic component of the electromagnetic fi
energy, a similar procedure can also be used. From Eq.~2! it
is obvious that the density of magnetic energy is sim
Emagnetic5m0/4H•H* . Once again, if we expressH as

H~r,t !5E dk

~2p!3
dvH~k,v!exp~ ik•r2 ivt ! ~10!

andH* as

H* ~r,t !5E dk8

~2p!3
dv8H* ~k8,v8!exp~ ik8•r2 iv8t !

~11!

and using Maxwell equations (¹3E52m0]H/]t), we ob-
tain for the magnetic energy of the field

Emagnetic5
c2e0

4 E dk

~2p!3

dk8

~2p!3
dvdv8

3
k3E~k,v!

v
•

k83E* ~k8,v8!

v8

3exp$ i ~k2k8!•r2 i ~v2v8!t%. ~12!

Assuming, as before, that the spectrum is centered arounv0
and that the spectral content is not very broad, we can i
grate Eq.~12! in the variablesv andv8 and over all space to
obtain

E drEmagnetic5
e0

4 E dk

~2p!3

dk8

~2p!3

c2

v0
2

3@k3E~k,t !#•@k83E* ~k8,t !#~2p!3

3d~k2k8!. ~13!

Integrating overk8, and using Eqs.~5! and~6!, with the new
variabless andr defined above, the expression for the ma
netic component of the field energy reduces to

Emagnetic5
e0

4 E dk

~2p!3

]

]vS 2k2c2

v
1

~k•eE!2

v D U
v0

F~k,r,t !,

~14!
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57 3425KINETIC THEORY OF PHOTON ACCELERATION: . . .
whereeE5E/uEu. It is now straightforward to define the en
ergy density of the electromagnetic field as

Efield~r,t !5
e0

4 E dk

~2p!3

]

]vS ve2
k2c2

v

1
~k•eE!2

v D U
v0

F~k,r,t !. ~15!

This expression must be compared with the energy den
written as a function of the number of photonsN(k,r,t):

Efield5E dk

~2p!3
2\v~k,r,t !N~k,r,t !. ~16!

Here\v is the energy of the individual photon,dk/(2p)3 is
the number of possible photon states with momentum\k,
v(k,r,t) obeys the dispersion relation for the propagat
medium, and the coefficient 2 accounts for the two polari
tions. Comparing the quantumlike expression of Eq.~16!
with Eq. ~15!, the natural definition ofN(k,r,t) is

N~k,r,t !5
e0

8\S ]D

]v D
v0

F~k,r,t !, ~17!

whereD[0 is the dispersion relation for the dielectric m
dium. For a homogeneous plasma, in the absence of an
ternal magnetic field,D512c2k2/v22vp

2/v2, with vp the
electron plasma frequency. The number of photons can
regarded as a distribution function of quasiparticles, the p
tons, in phase space (k,r). The physical meaning of both
axes is clear: along thek axis ,N represents the evolution o
the field fast phase, or thek spectrum~fast time scale!, while
along ther axis we have the description of the slow amp
tude of the electromagnetic field~slow time scale!. Further-
more,k and r are now independent variables. The most i
portant novelty of this formulation is the unified view ofk
and r space, which leads to a better understanding of
interplay between the spectral and spatial deformation of
trashort laser pulses, and the connection between the
time scales. The number of photons written in this way
formally equivalent to the spectrum of the autocorrelat
function, in the wave-vector–space domain. This funct
often occurs associated with the experimental characte
tion of ultrashort laser pulses with a time-dependent sp
trum @11#. Some additional points must be made concern
the approximations involved in this derivation:~i! we have
neglected rapidly varying terms in the energy density defi
tion; ~ii ! we have assumed that the spectrum of the elec
magnetic field is centered around a frequencyv0 and the
spectrum widthDv is small compared with the frequenc
v0. For transform limited laser pulses, these approximati
are valid ifl0 /ct!1, wherel0 is the central wavelength o
the laser pulse andt the pulse duration~for l051 mm, t
@1 fs).

For a plane wave,E5E0exp(ik0•r2 iv0t), the number of
photons is simply
ity
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Nplane~k!5
e0

8\

]D

]v
uE0u2d~k2k0!, ~18!

which is just the usual definition of the number of photo
found in the literature@12,13#. However, our more genera
approach allows for the definition of the number of photo
even for short laser pulses. For a linearly chirped o
dimensional~1D! Gaussian laser pulse, propagating in a h
mogeneous medium along thex axis with group velocityvg
and phase velocityvf , durationt, described by the electric
field E5eEE0exp$2(x2vgt)

2/(ct)2%exp$2i@v0(t2x/vf)1b(t
2x/vf)2#%, the number of photons verifies

NGauss~k,x,t !5
e0ctApuE0u2

8A2\

]D

]v
expF22

~x2vgt !2

~ct!2 G
3expF2

~ct!2

2 H k2k01
2b

vf
S x

vf
2t D J 2G .

~19!

In Fig. 1, we plot the number of photonsN given by Eq.~19!
for a transform limited pulse (b50) and for a chirped pulse
bÞ0. The intuitive picture provided by the number of ph
tons is clear: in linearly chirped pulses, the instantane
spectral distribution, or the corresponding wave-number d
tribution derived from the dispersion relationD[0 for the
photons, has a linear dependence with the relative posi
along the laser pulse extent, as shown by the spectral de
mation in Fig. 1~b!. The pulse width, spectral width, an
chirp are calculated as the moments of the distribution fu
tion N(k,r,t). In particular, the wave-vector chirp, i.e., ho

FIG. 1. Number-of-photons distribution for a Gaussian la
pulse propagating in vacuum in the phase spacej5(x2ct)/(ct),
dk5(k2k0)ct: ~a! Without chirp,b50; ~b! with linear chirpb5
20.45/t2 for the same amplitude contours.
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3426 57L. OLIVEIRA e SILVA AND J. T. MENDONÇA
the local wave number changes along the laser pulse,
given timet, can be expressed as

^k& r,t5
*dkkN~k,r,t !

*dkN~k,r,t !
. ~20!

The spatial intensity and the spectral intensity are obtai
by calculating the following integrals:

E dkN~k,r,t !5
e0

8\S ]D

]v D
v0

uE~r,t !u2, ~21!

E drN~k,r,t !5
e0

8\S ]D

]v D
v0

uE~k,t !u2. ~22!

The number of photonsN defined above provides a full de
scription of an ultrashort laser pulse, giving a particular e
phasis to the internal evolution of the instant spectral a
spatial distribution of the electromagnetic field.

III. FROM ENERGY CONSERVATION
TO NUMBER-OF-PHOTONS CONSERVATION

In the previous section, the number of photonsN was
generalized in order to describe electromagnetic pulses.
now important to describe how this distribution evolves
time. The most direct method to evaluate the time evolut
of the number of photons would be to solve Maxwell equ
tions for the electric field and, for each timet, to calculate
the corresponding number-of-photons distribution. In this
per, we will not follow this approach since, apart from t
new point of view, this would not add new insight to th
problems of laser pulse propagation. Instead, starting f
electromagnetic energy conservation for the fieldand for the
particles of the medium, we will derive an equation for t
evolution of the number of photonsN in an unmagnetized
plasma, which, for underdense plasmas, reduces to cons
tion of the number of photons. This approach leads to
generalization of the wave action conservation equat
which allows for the inclusion of all the nonlinear wav
wave and wave-particle interaction mechanisms in a nat
way, starting from first principles.

The total energy in the electromagnetic field can be w
ten as

Wfield5E dr
dk

~2p!3
2\v~k,r,t !N~k,r,t !, ~23!

where the integration inr is over all space. The energy tran
ferred to the particles in the medium, which is already
cluded in Eq.~23!, is given by@16#

Wparticles5E dr
J•A

2
. ~24!

The critical point here is to determine the current densitJ
due to the presence of the electromagnetic field, which
function of the properties of the medium. We shall conce
trate our efforts on an unmagnetized plasma. In this case,
for field intensities such thata05euAu/mec!1, the current
density is simply written as
t a

d
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J52e0vp
2~r,t !A~r,t !, ~25!

with vp5Anee
2/e0me the electron plasma frequency, an

ne(r,t) the electron density of the plasma. WritingA in com-
plex form, and neglecting rapidly varying terms, Eq.~24!
now reduces to

Wparticles52
e0

4
Edrvp

2~r,t !A~r,t !•A* ~r,t !. ~26!

We now assume thatA(r,t)5A0(r,t)exp@iS(r,t)# such that
S(r,t) represents a fast phase andA0 is a slowly varying
amplitude ofr and t. Furthermore, we define the instant
neous frequencyv52]S/]t and the instantaneous wav
vector k5¹S. Using these assumptions, in the Loren
gauge,E52]A/]t, Eq. ~26! verifies

Wparticles52
e0

4 E dr
vp

2~r,t !

v2~k,r,t !
E~r,t !•E* ~r,t !. ~27!

For short laser pulses, using Parseval theorem and Eqs~5!
and ~6!, and following the procedure of Sec. II, the tot
energy transferred to the particles of the medium is written

Wparticles52E dr
dk

~2p!3
\vp

2~r,t !
1

@v~k,r,t !# r0 ,k0

N~k,r,t !,

~28!

where r0 is the central position of the laser pulse, and t
number of photonsN is related with the electric field throug
Eq. ~17!. The dispersion relation for photons in an unmagn
tized plasma was also employed, so that (]D/]v)52/v. It
must be pointed out that we implicitly assumed that the d
sity perturbation has a time scale and space scale such
mode coupling does not occur, i.e.,kp!k0 and vp!v0
wherelp52p/kp(tp52p/vp) is the typical spatial~tempo-
ral! scale of the perturbation. It must be stressed that
generalization of this procedure in order to include wav
wave interaction processes and, in particular, stimulated
cesses is straightforward. In fact, inserting the proper non
ear current density in Eq.~24! will introduce nonlinear
coupling between different regions of the phase space.

The total energy of the system obeys the equation

Wtotal5E dr
dk

~2p!3
2\vN~k,r,t !. ~29!

In the absence of sources and/or sinks, the total energ
conserved. Hence,

d

dt
@2\vN~k,r,t !#50, ~30!

whered/dt is the convective derivative for the variablesk, r,
and t. From the linear dispersion relationD[0 and the ray
tracing equation forv (dv/dt5]v/]t), the previous equa-
tion is expressed as

dN
dt

52
N
v

dv

dt
, ~31!
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For a stationary plasma, the right-hand side~rhs! of Eq. ~31!
vanishes, sincedv/dt50, and the number of photonsN is
conserved. In general, this will not occur, and the rhs c
tributes for the increase~decrease! of the number of photons
if the frequency decreases,dv/dt,0, ~increases,dv/dt
.0). The rhs of Eq.~31! represents the first correction to th
usual wave action conservation in inhomogeneous and n
stationary media. Previous derivations of the wave act
conservation equation@17# have failed to identify the contri-
bution of this correction term; the dissipative properties
the medium~ImDÞ0) contribute to the rhs of Eq.~31! in the
form of a dissipative term. In our discussion, we have alw
considered ImD50.

For underdense plasmas, and assuming that (1/v)dv/dt
;1/T (T is the time scale of the frequency variation!, the
number of photonsN is conserved in the time scaletcons
!T:

dN
dt

5
]N
]t

1
dk

dt
•

]N
]k

1
dr

dt
•

]N
]r

[O~1/T!. ~32!

The photon dynamics is described by the ray tracing eq
tions for k and r, which are derived from the Hamiltonia
v[v(k,r,t) @7#, obtained by inverting the WKB dispersio
relationD(v,k,r,t)[0. Equation~32! can then be written as

]N
]t

2
]v

]r
•

]N
]k

1
]v

]k
•

]N
]r

[O~1/T!50. ~33!

Equation~33! expresses the number-of-photons conser
tion in the phase space (k,r) and it is equivalent to a Klim-
ontovich kinetic equation for the distribution functio
N(k,r,t) because this microscopic distribution function re
resents the density of particles evolving in a six-dimensio
space. Equation~33! describes the interplay betweenk space
and r space through the time evolution ofN. The second
term on the left-hand side of Eq.~33! describes group veloc
ity dispersion, and the third term is responsible for the wa
number spreading and/or compression due to the density
dient, which is also the contribution responsible for phot
acceleration. With this approach, the physical mechani
behind laser pulse propagation are clearly decoupled and
usual methods for solving flux conservation type equati
can be used, while retaining the most important feature
the propagation.

IV. PHOTON ACCELERATION BY A LASER
WAKE FIELD

Previous attempts to use the equation for the conserva
of the number of photons, or the wave kinetic equation, h
been essentially concerned with stimulated scattering
turbulent scattering of plane waves in a plasma@12,13#. In
this section, we apply the formalism to the interaction of
ultrashort laser pulse with a 1D relativistic wake field, cr
ated by a much stronger laser pulse, moving in thex direc-
tion. The linear dispersion relation, the essential ingred
of our discussion, isv5Ak2c21vp0

2 F@kp0(x2vft)#, with
k5kx , kp05vp0 /vf.vp0 /c, and F@kp0(x2vft)# de-
scribes the normalized electron density modulation ass
ated with the wake field. The velocity of the plasma pert
-
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bation,vf , is the group velocity of the stronger laser puls
which creates the density perturbation, thusvf;c. Using
this dispersion relation, and calculating the contribution
the dispersion term in Eq.~33!, we obtain the typical disper
sion time scale for propagation in a homogeneous plas
tdisp5ctk0v0

2/(Dkvp0
2 ), wheret is the pulse duration, with a

central frequency~wave number! v0 (k0), and spectral width
Dk . We will follow the laser pulse for times much shorte
than tdisp, such that dispersion can be neglected. Moreov
we will consider propagation in the underdense regi
vp /v!1. With these assumptions, the dispersion relat
can be linearized around the central wave numberk0 ~for
Dk /k0!1) in order to obtain

v~k,x,t !5k0c1
vp

2

2k0c
1c~k2k0!S 12

vp
2

2k0
2c2D , ~34!

where vp
25vp0

2 F@kp0(x2vft)#, and k,k0.0. The fre-
quencyv(k,x,t) plays the role of the Hamiltonian, which
generates the ray tracing equations for the canonical v
ablesk and x @7#. Introducing the normalized coordinate
t̄ 5vp0t, x̄ 5kp0x, k̄ 5k/kp0, and performing the change o
variablesh5 x̄ 2bf t̄ and ẽ 5k/k022, wherebf5vf /c,
the Hamiltonian for the new coordinates is

V~ ẽ ,h,t !5 ẽ ~12bf2ṽp
2!, ~35!

with ṽp
25F(h)/(2 k̄ 0

2), the new canonical momentumẽ ,
and the new canonical positionh. The copropagation~coun-
terpropagation! regime occurs forbf.0 (,0). When de-
fining the new positionh, we have assumed thatvf5const.
In spite of the drastic approximations involved in derivin
Eqs.~34! and~35!, the most important features are retaine
the possibility of photon acceleration and the dependenc
the group velocity on the local electron density. In the n
variables, Eq.~33! is written as

]N
] t̄

1~12bf2ṽp
2!

]N
]h

1 ẽ
]ṽp

2

]h

]N
] ẽ

50, ~36!

which can be integrated explicitly by the method of chara
teristics for several dependenciesF(h). The general solution
to Eq. ~36! can be written implicitly as@18#

N~ ẽ ,h,t !5Ni S ki5@ ẽ 0~ ẽ ,h, t̄ !12#k0 ,

xi5h0~ ẽ ,h, t̄ !
c

vp0
D , ~37!

whereNi(ki ,xi) is the initial photon distribution function
The functionsẽ 0( ẽ ,h, t̄ ) and h0( ẽ ,h, t̄ ) are obtained by
inverting the solutions of the ray tracing equations, cor
sponding to the Hamiltonian in Eq.~35!:

dh

d t̄
5

]V

] ẽ
512bf2ṽ p

2, ~38!
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d ẽ

d t̄
52

]V

]h
5 ẽ

]ṽp
2

]h
, ~39!

dV

d t̄
5

]V

] t̄
50. ~40!

Since we are considering dispersionless propagation, the
lution of Eq. ~38! does not depend onẽ , and soh0(h, r̄ ) is
also independent ofẽ . Assuming an initial distributionNi
symmetric in respect tok0, we can calculate the wave
number chirp using Eq.~20! and conservation of the new
HamiltonianV( ẽ ,h):

^k&h, t̄ 5k0@22Q~h, t̄ !#, ~41!

whereQ(h, t̄ ) obeys the equation

Q~h, t̄ !5
12bf2ṽp

2~h0!

12bf2ṽp
2~h!

. ~42!

Equation ~41! can be expressed forẽ as ^ ẽ &h, t̄

52Q(h, t̄ ). The analysis of Eq.~41! shows that a pulse
injected in a region with constant electron density, such t
ṽp

2(h0)5Ci5const for anyh0 along the pulse, will be
chirped only in the region of electron density gradient; wh
it arrives at a new region whereṽp

2(h)5Cf5const for the
entire laser pulse, no chirp will be observed. However, e
if chirp is not present~a transform limited pulse remain
transform limited after interaction with the density gradien!,
the number-of-photons distribution will be distorted. In fa
the spectral width of the laser pulse verifies:

Dk
25^k2&2^k&25

*dkdxk2N~k,x,t !

*dkdxN~k,x,t !
2F*dkdxkN~k,x,t !

*dkdxN~k,x,t ! G2

.

~43!

It can be easily shown for transform limited Gaussian pul
that, after the interaction with the electron density gradie
the spectral width is

Dk
25Dki

2 Q2~h, t̄ !5Dki
2 S 12bf2Ci

12bf2Cf
D 2

. ~44!

Furthermore, the central wave number^k& of the laser pulse
is shifted by a factor

dk5^k&2k05
*dkdxkN~k,x,t !

*dkdxN~k,x,t !
2k0

5k0S 12
12bf2Ci

12bf2Cf
D . ~45!

This corresponds to the usual maximum frequency shift
to pulse compression predicted for the interaction of a la
pulse and an electron beam in the underdense regime.

We now consider the simplest model for the electron d
sity perturbation describing a laser wake field:F(h)51
1dsin(h), whered represents the amplitude of the electr
density oscillation. In this case, the ray tracing equatio
o-

at

n

n

,

s
t,

d
er

-

s

~38!–~39! can be fully integrated, so thath0( ẽ ,h, t̄ ) and
ẽ 0( ẽ ,h, t̄ ) obey the equations

h0~ ẽ ,h, t̄ !5G21~G~h!2 t̄ 1t 0̄!, ~46!

ẽ 0~ ẽ ,h, t̄ !5
ẽ

Q~h,h0!
, ~47!

where the functionG(h) verifies

G~h!5
2

Ap22q2
arctanFqcos~h/2!1psin~h/2!

cos~h/2!Ap22q2 G , ~48!

where p512bf21/(2 k̄ 0
2) and q52d/(2 k̄ 0

2). Inserting
Eq. ~46! and Eq. ~48! in Eq. ~36! we have the complete
evolution of the number of photons in the presence of a la
wake field. In Fig. 2, we plot the number of photons f
several propagation times, in a copropagation configura
k.0,bf.0, where it is possible to see the deformation
the laser pulse spectrum while evolving in the wake fie
This deformation is compared with the chirp described
Eq. ~41!. As predicted, the chirp follows very closely th
electron density perturbation. This is evident from Eq.~41!.
For copropagation in a relativistic wake fieldbf;1. Fur-
thermore if (12bf)v0

2/vp
2!1, the chirp is given by

^ ẽ &h, t̄ .2
ṽp

2~h0!

ṽp
2~h!

52
11dsin~h0!

11dsin~h!
. ~49!

This means that even for underdense plasmas, the chirp
duced by the wake field can be significant, and it is of t
order of the electron density modulationd. On the other
hand, for counterpropagationbf;21, the chirp induced by
the wake field is of the order (vp /v0)2.

Another important feature is the possibility of relating th
maximum chirp with the gradient of the electron densi
giving rise to another diagnostic method for this fundamen
parameter of laser plasma particle accelerators. Unlike
vious techniques based on the photon acceleration con
@19,20#, this new diagnostic method does not rely on t
measurement of the phase-frequency shift induced by
plasma wave on the pulse centroid; it is based on the chir
the probe beam, i.e., the different phase-frequency shifts
the pulse experiences along its extent. The maximum c
induced by the laser wake field, i.e., the maximum
d^k&/dh calculated in the centroid of the pulse, occurs f
the maximum ofdQ/dh, which is equivalent to the condi
tion
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FIG. 2. Time evolution of the number-of-photons distribution for an initially transform limited Gaussian pulse in the phase spaceẽ ,h):

~a! t̄ 50, ~b! t̄ 5250, ~c! t̄ 5500, ~d! t̄ 5750, ~e! t̄ 51000 with tvp051, k0 /kp510, d50.25, andbf50.99, for the same amplitude
contours. The chirp predicted by Eq.~41! is also plotted~solid line!.
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maxS dQ

dh D
hc

5maxS Q2

12bf2ṽp
2~h0!

dṽp
2~h!

dh D
hc

.C1maxUS dṽp
2~h!

dh
D

hc

U , ~50!

where only first order terms ofd have been retained,d!1,
andC1512bf2vp

2(h0)5const is calculated for the puls
central positionhc . This means that by probing the las
wake field with weak ultrashort laser pulses, and analyz
the chirp of the probe pulses, it is possible to determine
maximum electron density gradient of the electron plas
wave. Other techniques@19# must rely on a continuous prob
ing of the wake field structure to derive this fundamen
g
e
a

l

parameter. The linear chirp for the wake field described
F(h) is then related to the parameterb in Eq. ~19! by b.
6bfvp0v0d/2. For laser pulse durationstvp0;1, the pa-
rameterb can be easily measured by autocorrelation te
niques, down to electron density modulations as low ad
50.01. Therefore, the determination of the maximum of t
chirp is sufficient to determine the electron density modu
tion d. Some indeterminacy associated with the velocity
the wake fieldbf is still present. However, as suggested
Dias et al. @20#, a comparison between copropagation a
counterpropagation can circumvent this indeterminacy du
the unknown interaction length of the probe pulse with t
moving electron density perturbation.

The considerably large chirp induced by the wake field
the copropagation scheme will also give rise to a signific
spectral and spatial deformation. This can be observed
Figs. 3 and 4. In these figures, we present the spatial in
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sity and the spectral intensity of the laser pulse for the sa
conditions of Fig. 2. The spatial intensity and the spec
intensity are calculated from theN distribution using Eqs.
~21! and ~22!. The evolution of the spatial intensity show
the wake field regions where the laser pulse is ‘‘acce
ated,’’ ¹F(h),0 @total pulse energy increases,Wfield( t̄

51000)51.143Wfield( t̄ 50)], and theregions where the
laser pulse is ‘‘decelerated’’¹F(h).0 @total energy de-
creases,Wfield( t̄ 5250)50.7653Wfield( t̄ 50)].

The energy increase~decrease! of the laser pulse is ac
companied by a wave number up~down! shift ~Fig. 4! so that
the number of photons remains conserved. This energy
crease~decrease! is accompanied by a pulse spreading~com-
pression! in the regions of acceleration~deceleration!, while
the maximum electric field remains more or less consta
thus, increasing~decreasing! the total field energy. This fea
ture could not be predicted if the less realistic plane wa
number of photons distribution of Eq.~18! was used: in this
case, number-of-photons conservation implies that a
quency increase necessarily leads to an amplitude increa
the electric field, which is not the case for electromagne
pulses, as we have just mentioned.

The spectral intensity also evolves in a very peculiar w
The central wave number decreases~increases! when the la-
ser pulse is decelerated~accelerated!. A nonsymmetric wave
number spreading is also observed~Fig. 4!: this is due to the
nonlinear chirp induced by the wake field~Fig. 2!.

The source~sink! for the field energy is the energy store
by the plasma electrons. In our approach, the energy
change between the electrons and the field does not affec
plasma oscillation. A self-consistent description of the wa
field and the laser pulse dynamics would lead to a pho
Landau damping scenario@21#, which is only relevant when
the ponderomotive force of the laser pulse in the plas
cannot be neglected~intense short laser pulses!.

Finally, it must be pointed out that the dynamics of t
laser pulse is recurrent; after a full libration in the wake fie
the laser pulse will recover its initial characteristics. This i
consequence of the time-independent nature of the Ha
tonianV( ẽ ,h) @7#.

FIG. 3. Electric field spatial intensity~arbitrary units! as a func-
tion of h for the same conditions as in Fig. 2, calculated from E

~21!: t̄ 50 ~solid line!, t̄ 5250~long-dashed line!, t̄ 51000~short-
dashed line!.
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V. CONCLUSIONS

We have derived an expression for the number of ph
tons, and its time evolution equation, starting from first prin
ciples, namely, the energy conservation for the system fi
1plasma electrons. Our generalization allows for th
extension of this concept to ultrashort laser pulses. The e
lution equation can be reduced to a Klimontovich kinet
equation in phase space, in the underdense regime (vp /v0
!1). However, the full evolution equation contains a corre
tion term of the order of (vp /v0)2 reflecting the influence of
the time-dependent plasma frequency, which, as far as
know, was never identified before. This result indicates th
further exploration of the relation between energy conserv
tion and conservation of the number of photons is necess
in order to clarify the limits of validity of the photon conser
vation equation.

Our new formalism was then applied to study a typic
mechanism where a time-dependent spectrum is observ
photon acceleration. We have calculated the chirp induc
by a wake field in copropagation and counterpropagation.
copropagation the induced chirp can be significant, and
pends essentially on the electron density modulation asso
ated with the wake field, while for counterpropagation th
induced chirp is negligible@O(vp

2/v0
2)#. Based on the analy-

sis of the induced chirp, a new diagnostic technique of t
electron density gradient was proposed. The evolution of
spatial intensity and the spectral intensity was also analyz
confirming the large induced chirp associated with the ph
ton acceleration effect. The total electromagnetic ener
variation associated with photon acceleration was also a
lyzed. It was shown that this increase~decrease! of the total
energy leads to a pulse expansion~compression!.

The results presented here can also be extended to
interaction of short pulses with electron beams or ionizati
fronts. In the latter case, a generalization of Eq.~31! is nec-
essary since the current density is no longer given by E
~25!. This will be the subject of a future publication.

The number-of-photons formalism introduced here puts

.
FIG. 4. Electric field spectral intensity~a.u.! as a function ofẽ

given by Eq.~22! for the same conditions as in Fig. 2:t̄ 50 ~solid

line!, t̄ 5250 ~long-dashed line!, t̄ 51000 ~short-dashed line!.
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strong emphasis on the space- and time-dependent chara
istics of the laser pulse, giving a clear picture of the interp
between the long and the short time scales. This appro
can lead to a better theoretical understanding of the sev
nonlinear phenomena occurring in the interaction of
trashort laser pulses with plasmas.
ter-
y
ch
ral
-
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